

MILANO 1863

Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and Machine Learning Classification on Google Earth Engine

> Maria Antonia Brovelli, Yaru Sun and <u>Vasil Yordanov</u> Politecnico di Milano – DICA | GEOlab FOSS4G Korea 2020 13/11/2020

1. Research problem

- 2. Introduction to the Amazon case study
- 3. Methods and tools
- 4. Results
- 5. Discussion and conclusion

Deforestation

- Forest area covers around 31% of the total land area
- Forest has important ecological roles:
 - It is a home for different species
 - It provides food and livelihood for people
 - It helps to mitigate climate change

According to FAO **deforestation** is the conversion of forest to other land uses, regardless of whether it is human-induced.

Consequences of deforestation:

- Soil erosion
- Biodiversity loss
- Water cycles
- Greenhouse gas emissions

Annual forest area net change for 2010–2020

Figure source FAO, 2020 – Key Findings

POLITECNICO MILANO 1863

Area of Interest

- In the state of Pará, Brazil
- About 50,000 km²

POLITECNICO MILANO 1863

Timely and continuous monitoring of forest dynamics is important

Main aims

- Timeseries analysis of forest cover for the last 20 years using EO data (Landsat, Sentinel-2) using Google Earth Engine and ML
- Assess the image classification through photointerpretation using CollectEarth and high-resolution imagery (CBERS)
- Simulate future forest dynamics based on the previously derived historic trends (QGIS and MOLUSCE)

Data and processing

Processing flow

Satellite	Operational (as for 2020)	Year	Spatial Resolution	Bands
Landsat 5 Landsat 7	1984–2012 1999–Present	2000 2006 and 2010	30 m	1(Blue), 2(Green), 3(Red), 4(NIR)
Landsat 8	2013–Present	2015		2(Blue), 3(Green), 4(Red), 5(NIR)
Sentinel-2	2015–Present	2019	10 m	2(Blue), 3(Green), 4(Red), 8(NIR)
CBERS 2B CBERS 4	2007–2010 2014–Present	2010 2015 & 2019	2.7 m 5 m	Panchromatic

POLITECNICO MILANO 1863

Tools

POLITECNICO MILANO 1863

Results – image classification

(a) Classification result_ederived from Landsat 7 for 2000; (b) Classification result derived from Landsat 5 for 2006; (c) Classification result derived from Landsat 5 for 2010; (d) Classification result derived from Landsat 8 for 2015; (e) Classification result derived from Sentinel-2 for 2019.

Validation

			Reference (HiRe)		User
			Forest	Non-forest	Accuracy
2010	Classified (Landsat)	Forest	521	13	0.98
		Non-Forest	37	496	0.93
	Producer accuracy		0.93	0.97	
	Overall accuracy			0.95	
	Kappa			0.91	
	Precision			0.98	
	Recall			0.93	
	AUCPRC			0.95	
2015 C R A A A	Classified (Landsat)	Forest	526	8	0.99
		Non-forest	36	497	0.93
	Producer accuracy		0.94	0.98	
	Overall accuracy				0.97
	Kappa			0.94	
	Precision			0.99	
	Recall			0.94	
	AUCPRC			0.96	
2019	Classified (Sentinel)	Forest	523	11	0.98
		Non-forest	32	501	0.94
	Producer accuracy		0.94	0.98	
	Overall accuracy				0.97
	Kappa			0.94	
	Precision			0.98	
	Recall			0.94	
	AUCPRC			0.96	

POLITECNICO MILANO 1863

Results – forest loss

Year	Loss (km²)/Gain (km²)	Percentage (Loss/Gain)	Relative Percentage (Loss/Gain)	Cumulative Loss/Gain (km ²)
2000-2006	5081.90/570.28	10.28%/1.15%		
2006-2010	1942.71/1615.15	3.93%/3.27%	-61.77%/183.22%	7024.61/2185.43
2010-2015	1779.41/1731.78	3.60%/3.50%	-5.41%/7.22%	8804.02/3917.21
2015-2019	2569.81/1115.86	5.20%/2.26%	44.42%/-35.57%	11,373.83/4462.79

POLITECNICO MILANO 1863

Results – MOLUSCE ANN test simulation for the period 2010-2014

FOSS4G Korea 2020 - 13/11/2020

Results – MOLUSCE ANN simulation for the period 2019-2028

FOSS4G Korea 2020 - 13/11/2020

Results

(Source: Instituto Nacional de Pesquisas Espaciais—INPE).

POLITECNICO MILANO 1863

Conclusions

- Google Earth Engine with the vast EO data archive proved as invaluable tool for time-series machine learning image classification
- Satellite observations with high temporal resolution + Google Earth Engine + CollectEarth + MOLUSCE can produce very accurate and reliable results
- Such setups can help into implementing, tuning and monitoring appropriate sustainable policies and regulations.
- Few considerations:
 - Shorter time-step
 - Different data type
 - Not considering any external interferences

You can read more here:

Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring Forest Change in the Amazon Using Multi-Temporal Remote Sensing Data and Machine Learning Classification on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2020, 9, 580. https://doi.org/10.3390/ijgi9100580

Thank you for the attention!

Future Simulation