FOSS4G Korea 2020 November, 2020

Using FOSS to estimate and predict the Land Surface Temperature

Nimish, G., Nishant, T., & Bharath, H. A.

Indian Institute of Technology Kharagpur West Bengal, India FOSS4G KOREA 2018

Climate Change

- Weather \rightarrow state of atmosphere at any given instant
- Climate → statistical description of weather over a period of time
- Unplanned urbanization → one of the major reasons of climate change

Warming oceans

Sea level rise

Global

temperature rise

Ocean acidification

Increased extreme events

climate.nasa.gov

Evidences

Global temperature rise

Warming oceans

-0

Shrinking ice sheets

Sea level rise

Extreme events

Ocean acidification

Historical representation of carbon dioxide levels

(Source: climate.nasa.gov)

Vital Signs

Source: climate.nasa.gov

Antarctica Ice Sheets

Source: climate.nasa.gov

Greenland Ice Sheets

Source: climate.nasa.gov

Sea Level (Source: climate.nasa.gov)

Urbanization

"Escalation in concrete area of towns or cities as a result of augmented demographic pressure"

- Urban population \rightarrow 55% (2016) and 68% (by 2050) (UN DESA, 2018)
- Crucial as it defines GDP per capita and defines how much economically sustainable a city is
- Impacts → Urban sprawl, Environmental impacts, poor quality of water, climate change, increased pollution levels, indecorous waste management, global warming, urban heat island, etc.

Land use / Land cover

• Land Use/ Land Cover (LULC) changes affects rate of evaporation, surface albedo, storage of heat, moisture content of soil, wind turbulence, solar radiation and surface temperature

Land Surface Temperature (LST)

"Radiative skin temperature of earth as viewed from sensors"

- Basic element of thermal behavior of earth
- Basic parameter to comprehend environment and climate change

Water Cycle

Crop Pattern

Wind Pattern

Biodiversity

• Useful for variety of applications

Estimation of GHGs

Vegetation Monitoring

 UNFCCC (United Nation Framework Convention for Climate Change), since 1992, tries to tackle these issues by organizing various International conventions

Signed by 154 nations to reduce emissions within 10 years to avoid global warming

Legally bounded developed nations to reduce the emissions by 5.4% by 2010

Signed by 195 nations and the main aim was to restrict the global temperature rise to 1.5-2°C

(United Nation Climate Change, 2018; Marshall, 2009)

The main objective of this study is to showcase the performance of FOSS in analysis of and forecasting LST over urban areas. Following sub objective needs to be performed for achieving this.

Analysis of Land Use/ Land Cover (LULC) using Gaussian maximum likelihood algorithm

2 Quantification of Land Surface Temperature (LST) using Radiative Transfer Equation algorithm

Developing a relationship to forecast Land Surface Temperature using regression analysis

STUDY AREA: Kolkata Metropolitan Area

- Also known as Greater Kolkata and is one of the oldest metropolitan cities in India
- Incorporates 5 municipalities North 24 parganas, South 24 parganas, Nadia, Howrah, Hooghly
- Serves as home to 14.11 million (Census, 2011)
- Third most populous city in India and eighth largest urban agglomeration globally

Area	1886.67 km ² (Population density: 7480/km ²)	
Temperature	Winters minimum (Dec – Jan): 9°C – 11°C Summer maximum (May – June): > 40°C Annual mean: 24.8°C	
Annual Rainfall	1582 mm/year (Monsoon: June – Sep)	
Elevation	1.5m – 9m	

Data & Method

Free and Open Source Software/Data Used

Google

Google Earth

- Virtual earth system formed by satellite imagery, maps, terrain, 3D buildings, etc
- Used for
- Creation of GCPs
- Geo-referencing the satellite data
- Validation of Landuse maps

Bhuvan

- Web mapping service application developed with the help of open layers and embedded map data
- Used for
- Creation of GCPs
- Geo-referencing the satellite data

GRASS GIS and Quantum GIS

- GRASS GIS: Mainly used for image processing, raster and vector data management, visualization, spatial modelling etc.
- QGIS: Helps in visual interpretation, manage, edit, analyze data, and compose geospatial maps
 Used for
- Creation of Landuse/Landcover maps and LST estimation
- Extraction of output maps

RStudio

- RStudio is an integrated development environment for R, a programming language for statistical computing and graphics
- Used for
- Statistical analysis
- Graphical representations

- Provides topographic and open series maps that contains natural and anthropogenic geographic features since 1767
- Used for
- Geo-referencing the satellite data

Survey of India Toposheets

- It is longest running program for acquisition of satellite imagery of earth.
- Provides data with good resolution (spatial, spectral and temporal) at no cost.
- Used for
 - Obtaining raw satellite data for 2004, 2009, 2014 and 2019 over the study area

Results: Land use analysis

Results: Temperature profile graph

Presence of urban and others category \rightarrow higher temperature Presence of water bodies and vegetation \rightarrow lower temperature

Equations obtained from test data

LST(2004) = 29.43 + 1.32*NDBI(2004) - 9.10*NDVI(2004) - 14.73*MNDWI(2004) + 10.48*BSI(2004)

LST(2009) = 31.92 + 3.69*NDBI(2009) - 11.21*NDVI(2009) - 16.96*MNDWI(2009) + 15.38*BSI(2009)

LST(2014) = 31.90 + 21.13 * NDBI(2014) - 14.81 * NDVI(2014) - 32.25 * MNDWI(2014) + 30.82 * BSI(2014)

LST(2019) = 32.07 + 9.39*NDBI(2019) - 7.19*NDVI(2019) - 24.46*MNDWI(2019) + 20.75*BSI(2019) - 24.46*MNDWI(2019) - 24.46*MNDWI(2019) + 20.75*BSI(2019) - 24.46*MNDWI(2019) + 20.75*BSI(2019) - 24.46*MNDWI(2019) + 20.75*BSI(2019) - 24.46*MNDWI(2019) + 20.75*BSI(2019) - 20.45*MNDWI(2019) - 20.45*MNDWI(2019) + 20.45*MNDWI(2019

Model estimated vs calculated

LST	Error parameters		
	MAE	MPE	
2004	0.86	3.10%	
2009	1.23	4.14%	
2014	1.02	3.50%	
2019	0.78	2.61%	

Predicted using regression equation

LST	Using	Error parameters		
	equation of	MAE	MPE	
2009	2004	2.16	6.99%	
2014	2009	1.74	6.23%	
2019	2014	1.92	6.43%	

The equation obtained for 2019 can be used to predict LST for 2024

MAE: Mean Absolute Error MPE: Mean Percentage Error

Conclusion

- There exist a **relationship** between **LULC** changes and climate change in terms of **LST**
- LULC dynamics demonstrated rapid change in **core** as well as **buffer** area
- Urban area has increased by **74.75%** during the study period
- City experienced growth in center, south-west, north-east and east direction
- Major concentration → Banamalipur, Newtown, Rajarhat, Andul and Howrah
- Quantification of LST illustrated a rise in mean LST by 2°C
- Urban area and others category shows high surface temperature while vegetation shows moderate and water body shows minimum
- Water body and vegetation helps in regulating the microclimate
- Regression analysis was tested and validated to forecast Land Surface Temperature
- It was observed that **linear regression** is providing **promising** relationship for forecasting LST
- Whole analysis was performed using free and open source software
- Formulation of strict policies → Sustainable development

Acknowledgement

USGS

Government of India Department of Science & Technology Ministry of Science & Technology

सत्यमेव जयते Goverment Of India

सत्यमेव जयते Department of Science and Technology (DST)

DST

And time is running out to deal with climate change

Thank you!!!